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Even though the advantages of the isomorphous replacement method over the heavy atom method 
have been recognized for a long time, this method has not had as wide an application in solving 
non-centrosymmetric structures as the heavy atom method. Viewing the problem of structure 
analysis as that of 'unfolding' the vector map of the structure, it is seen that in principle the iso- 
morphous series method should have exactly the same applicability as the heavy atom method in 
the case of non-centrosyrnmetric structures also. A Fourier synthesis based on data from two non- 
centrosymmetric isomorphous crystals is suggested and this synthesis is shown to be of considerable 
value in solving such structures. 

Introduction 

Some of the most successful analyses of complicated 
organic crystal structures have been achieved with 
the help of either the isomorphous replacement method 
or the heavy atom method. Even though at first sight 
these two methods seem very different with regard 
to their applicability in any particular case, more 
detailed study shows that  the principles used in 
deducing the structure from the measured intensities 
of reflections are almost identical in the two cases. 
In  theory, the heavy atom technique applied to a 
crystal with an infinitely heavy atom and with 
intensities measured with no errors will give the same 
results as the isomorphous series. Hence, the iso- 
morphous series will have the same applicability, 
limitations and ambiguities as the corresponding 
idealized heavy atom method. The advantage of the 
isomorphous series method over the heavy atom 
method is in the accuracy with which the light atom 
positions can be determined for a given accuracy in 
the intensity measurements. Indeed, this fact has been 
recognized by crystallographers for a long time and 
applied in many successful structure analyses. How- 
ever, in all these analyses, the isomorphous technique 
has been applied to the centrosymmetric cases; the 
heavy atom method being more widely used in non- 
centrosymmetric cases even when isomorphous crystals 
were easily available, l~egarding the problem of struc- 
ture analysis of isomorphous crystals as a problem in 
'unfolding' the difference Patterson (D.P.) of the 
structure, it has been shown (Kartha & Ramachan- 
dran, 1955) that  this can be done as easily in the 
acentric as in the centric case, and that  it is possible 
to recover the original structure from the (D.P.) in 
219 of the 230 space groups, if the replaceable atoms 
are in general positions. For the remaining 11 polar 
space groups, the structure duplicated by its inverse 
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is obtained if there is only one replaceable atom per 
asymmetric unit. This ambiguity can also be removed 
if the structure contains more than one replaceable 
atom per asymmetric unit. The same treatment applies 
to the Patterson of the heavy atom structure and the 
same limitations also apply. I t  is thus clear that,  
viewing the problem of structure analysis as an 'un- 
folding' problem, there is no difference in principle 
between the two methods as applied to either the 
centric or non-centric cases. 

It  was pointed out in the paper cited above (Kartha 
& Ramachandran,  1955) that  the problem of non- 
centric structures viewed as an 'unfolding' problem 
using superposition and minimum function methods 
can be solved without ambiguity,  whereas trying to 
solve the problem by determining the phases of the 
reflections gave ambiguous results. However, it was 
felt that  two isomorphous non-centrosymmetric crys- 
tals contained enough information to 'arrive' at the 
structure by the phase method, provided the problem 
is suitably formulated. With this aim the author 
made a detailed study of the way in which the 
simplified Patterson, containing only vectors involving 
heavy or replaceable atoms can be 'unfolded' by a 
superposition method to enable a complementary 
Fourier series formulation using measured amplitudes 
and inferred phases, which also gives the same solu- 
tion. As a result, a modified Fourier series is obtained 
which extends the isomorphous series method to non- 
centric cases, so that  we can make use of the obvious 
advantages of this method over the more commonly 
used heavy atom method. As the success of the 
suggested Fourier is capable of a surprisingly simple 
intuitive explanation, such an argument leading to 
the suggested series is developed in the next sections. 

Phase  ambiqui ty  in non-centr ic  s tructures  

If we consider the vector diagram (Fig. 1) describing 
the scattering from two isomorphous crystals C1 and 



G O P I N A T H  K A R T t t A  681 

C2, it is seen tha t  there are two possible solutions 
corresponding to two values for the phase angle 
of the scattering amplitude [FI from tha t  part  of the 
structure common to the two isomorphs. These two 
values may be written 

~ = a + 0 ,  (1) 
where 0 is given by 

cos O= IFII~- IF21~- IRII~, + IR212121FIIRI . (2) 

The quantities on the right hand side of (2) are 
indicated in Fig. 1. I t  is seen tha t  the two possible 
values for the phase angle ~ are symmetrical about a, 
the phase of the replaceable group. 

/ 2f  :" / / / I / R 

/ / /¢' 

o 

Fig. 1. Phase ambiguity in non-centric structures. The ampli- 
tudes [Fll and ]F21 for the two crystals C 1 and C 2 are known. 
Magnitudes [RII-~CC 1 and tR2[=CC2 of replaceable atoms 
and phase angle a are also known. Aim is to determine 
phase 9 and magnitude IF] of unknown part C. Two 
possible vector solutions are given by OC and OC'. 

In  centrosymmetric cases no ambiguity arises, since 
0 = 0  or ~ and in either case - 0 =  + 0  so tha t  both 
solutions for 9 in equation (1) coincide. In non- 
centrosymmetric cases this ambiguity in ~ could be 
resolved by having another isomorphous crystal with 
atoms substi tuted in a different place. Using this we 
could get another possible pair of values for ~ which 
are symmetrical about another value of a. In  such 
a case one of the values of 9, the true one, should be 
the same for the two substitutions; of course allowing 
for the experimental error, and thus the correct value 
of 9 could be picked. This method, the so-called 
multiple isomorphous series method, of determining 
phases in non-centrosymmetric cases has been sug- 
gested earlier by Harker (1956) and used in the 
analysis of proteins by Kendrew et al. (1958). The 
difficulty in the use of this method in ordinary organic 
structures is the chemical problem of obtaining more 
than two isomorphous crystals with additional atoms 
in different positions. Though it  may be quite easy 

to get three isomorphous salts, say of HC1, HBr and 
HI  for many substances, this is not sufficient to 
resolve the ambiguity, as the halogen atoms are likely 
to be in similar positions and thus would lead to the 
same two values of ~ as from the first substitution. 
Hence, the requirement tha t  the crystals must have 
substituents in different positions and still be iso- 
morphous is likely to be the highest hurdle in the 
applicability of the multiple isomorphous series method 
to ordinary organic structures. However, in the case of 
proteins, where the conditions and definition of iso- 
morphism are much less stringent, it has been possible 
to use the method by attaching groups of heavy atoms 
at  different specific sites on the molecule without 
much change in the general arrangement of the rest 
of the structure, at  least to the resolution under study. 

Double phased Fourier 

In  the series proposed in this paper for use with 
isomorphous non-centrie crystals, the procedure is as 
follows. Using data from the two isomorphous crystals 
the phase angle ~ can be calculated according to 
equations (2) and (1) except for an ambigui ty  in the 
sign of 0. In  the absence of any additional data  to 
resolve this ambiguity, it  is proposed tha t  a series 
computed using both the possible phases, one of which 
is known to be correct and the other wrong, will give 
useful results. I t  is reasonable to expect tha t  the terms 
with the correct phase will continuously build up 
peaks at the true atomic positions, whereas the wrong 
phases do not in general build up systematically, but  
give rise to only dispersed spurious peaks of lesser 
height on a general background. The detailed analysis 
of the process of 'unfolding' the Patterson and reducing 
the background of spurious peaks to a minimum did 
indeed lead to this series and showed tha t  this in fact 
is the case. I t  also indicated the positions and weights 
of the spurious peaks. 

The series using both phases is given by 

@ (x, y, z) 
= Z Z Z I F I  [exp [ + i ( a + 0 ) ] + e x p  [ + / ( a - 0 ) ] ]  

× exp - 2z i  (hx + Icy + lz) 
= XXX(2 IF l cos 0) exp [ia] exp - 2~i (hx + Icy + lz) 
= X X X F '  exp - 2 ~ i  (hx + I c y + l z -  a ) .  (3) 

Equation (3) shows ' that  the double phased Fourier 
can be written as an ordinary series with F '  as ampli- 
tude and a, the phase of the replaceable group, as the 
phase angle. Here F '  is given by expression (4) 

F'=2]F[ cos O= IF1] e -  life] e -  IRllU+ [Rele/]RI (4) 

and can be evaluated from the unknown quantities 
on the right hand side. Equation (3) can also be regarded 
as a Fourier series with coefficient IF[ weighted with 
the weighting factor cos 0 and having the phase angle 
a of the replaceable group. I t  is interesting to note 
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tha t  the series given in (4) is the same as the one 
denoted 'isomorphous fl synthesis' by Ramachandran 
& Raman (1959) and arrived at by different con- 
siderations. 

I t  has been suggested above tha t  by performing a 
Fourier synthesis using both the correct and incorrect 
phases, the correct phases tend to build up peaks at 
the actual atomic positions, while the incorrect ones 
cause only minor peaks in the background. However, 
this fact is by no means obvious and there are cases 
where the incorrect phases also consistently add up 
to an equally high density at positions which do not 
correspond to any actual atomic position. For example, 
in the case where the replaceable set of atoms has a 
centre of inversion while the structure itself does not, 
we have the phase a of the contribution of the re- 
placeable atoms always 0 or g. In  such a case, of the 
two phases ~c = c~ + 0, the incorrect phase consistently 
cancels out the imaginary 'B' component of all 
reflections, thus superposing a centrosymmetrically 
related ghost structure of equal weight over the true 
set of peaks. This, in fact, was the case with the 
analysis of the strychnine molecule (Bokhoven, 
Schoone & Bijvoet, 1951) where the duplication 
occurred with each atom represented by a pair of 
equally dense peaks, one of which had to be discarded 
and the choice had to be made by using the results 
from a centrosymmetric projection and a knowledge 
of interatomic distances. This shows tha t  a more 
detailed s tudy of the effect of the introduction of 
Fourier coefficients with incorrect phases is necessary, 
before we can comment on the applicability of the 
method. 

Peaks due to incorrect phases in Fourier 

If we assume tha t  the structure C is obtained by the 
Fourier transformation of the structure amplitudes IF[ 
with correct phases c~+0, we shall t ry  to find the 
implication of the series involving IFI and the in- 
correct phase a - 0 ,  i.e., 

F.T. of IF[ exp [ i ( c~+0) ]=C.  (5) 
Hence 

F.T. of ]FI exp [i (c~- 0)] 
=F .T .  of {exp [2ia]}{]F[ exp [ - i ( c~+0) ]} .  (6) 

By Fourier transform theory the F.T. of the right 
hand side of equation 6 is the convolution of the F.T.'s 
of the terms in the curly brackets. Obviously, the 
F.T. of [FI with phase angles the negative of those of 
C is the inverse of structure C, which we might 
denote by C*. In the language of image theory this 
means the incorrect phases give rise to ghost images 
of the inverse structure C* repeated at points cor- 
responding to the Fourier transform of exp [2ia]. 

Let us t ry  to find peaks corresponding to the 
exp [2ic¢] series. We know tha t  the series IRI] exp [ia] 
gives peaks of weight Ri at the positions rt correspond- 

ing to the replaceable atoms of the first crystal. 
A Fourier series with [R1] 2 exp [2i~] will give peaks 
of weight RtR~ at positions ri q-rj. This set of peaks 
can be divided into two groups. The first corresponds 
to the diagonal elements of the set RiRj with weight 
JRtl 2 at position 2rt and these are n in number where 
n is the number of replaceable atoms. The second 
group, n(n-1)/2 in number corresponds to the off- 
diagonal elements, which are all double peaks and have 
weights 2R~R~ and positions r~-t-rj. 

As a first approximation, the positive peaks of the 
exp [2i~] series will have the same configuration and 
relative weights as the [R[ 2 exp [2ic¢] series, but  with 
weights reduced by a factor 1/Y,R~. Thus we might 
write out the peaks of the exp [2ie¢] series as 

R1/XRi at 2ri, (1) n single peaks of weight 2 2 
(2) n(n-1)/2 double peaks of weight 2RiRj/XR~ at 

rj  + r~. (7) 

Thus, the resultant peaks from the double phased 
synthesis in equation (3) for the case where all R 
atoms are similar are" 

(a) One image of structure C with weight uni ty  at  
origin, 

(b) n images of inverse structure C* with weight 
1/n at positions 2ri, 

(c) n(n-1)/2 images of structure C* with weight 
2/n at positions rt + rj. (8) 

Of the three sets of images in (8) resulting from the 
double phased synthesis (8)(a), is due to use of the 
correct phases while (8)(b) and (8)(c) are due to in- 
correct phases. I t  is seen tha t  the required image of 
C has a higher weight than all the ghost images of 
the inverse of C in all cases where there are more than 
two replaceable atoms in the unit cell. For special 
configurations of the replaceable group R, either due 
to accident or symmetry,  the peaks in (8)(c) may  
coincide, causing superposition of the inverse struc- 
ture C*. This happens if, for any pair of R atoms, 
there are double or multiple peaks in the Patterson 
of this set; so tha t  ( r i - r j ) = ( r ~ - r n ) .  This causes 
another pair of interactions in the set (8)(c) (namely 
r i + r z = r ~ + r n )  to coincide and the corresponding 
weight of the off-diagonal C* image becomes 
2(RtRz+RjRn)/XR~ which reduces to 4/n for the case 
of similar R atoms. Of course, this number will always 
be less than n/n= 1 and hence will never be greater 
than the weight of the image of C given by (8)(a). 
Thus, multiple peaks ij=ml in the Patterson of the 
R group give corresponding multiple peaks im=jl of 
weight 4/n in the set (8)(c). The only time any peak 
ij in set (8)(c) is as large as uni ty  is when the whole 
set of atoms in the group R can be divided into two 
sets of n/2 each, such tha t  

R~ + R(~/2+~) = R2 + R(~/2+2) . . . . .  R(n/2) + Rn = 2q (say) 

in which case we can write these as 
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R1 - q = q - R(n/2+D ; R2  - q 

="  q - -  R ( n / 2 + 2 ) ,  • • . ,  R(~/2_1) - q = q -  R n  . 

With such an arrangement, the peak in (8)(c) corre- 
sponding to the interaction between the two groups 
will coincide at  the point 2q giving a multiple peak 
of weight n / n  i .e .-- the same as the weight of the 
structure C. Hence, in this special case, the Fourier 
synthesis with both the phases gives the inverse struc- 
ture C* as seen from the point 2q and the true struc- 
ture C imaged at the origin, both occurring with the 
same weight. Of course, this is the arrangement tha t  one 
obtains for a centrosymmetric grouping of R atoms 
around q and, as has been shown by Kar tha  & Rama- 
chandran (1955), under these conditions the structure 
is always accompanied by its inverse. The same can 
also be predicted by considering equation (6). In  the 
case of the centric arrangement of the R groups cen- 
tered about the origin (a case with q = O )  the phase 
angle ~ = 0 or z and in either case exp [2ia] = u n i t y  
and the corresponding Fourier transform is a function 
having non-zero values only at the origin and the 
weight of the corresponding inverse image is unity. 
Hence the incorrect phases give the inverse structure 
C* which has the same weight as the image C due to 
the correct phases. 

amplitudes of all the reflections of one crystal, say C1, 
then a Fourier series involving these will give us peaks 
corresponding to the structure shown in Fig. 2. How- 
ever, as the phases are unavailable, our aim is to get 
the polygon represented by the unknown part  of the 
structure from a knowledge of the amplitudes JFII and 
iF2] for the two isomorphs and also of the positions 
and scattering contributions of the replaceable groups 
of atoms R1 and R~.. 

1_ 
"/ 

• 7 

• R,i  

Fig. 3. Simplified P a t t e r s o n  m a p  where  all vectors  which  do 
no t  involve replaceable  a toms  are removed.  This is the  resul t  
of a series wi th  (JFll 2 -  JF2J2--IRll2+ JR212). 

Results from the vector map viewpoint 

The principles involved in the above method can 
perhaps be somewhat more clearly followed by regard- 
ing the corresponding steps from the vector map 
viewpoint, and in the present section this is done 
diagrammatically for a simple structure. (Point atoms 
are used for clarity.) Fig. 2 shows the fundamental 
set of points (Buerger, 1950) divided into two types, 
type C which remains the same in both of the iso- 
morphs, and the type R corresponding to the replace- 
able group of atoms. If we had both the phases and 

C3 

R3 I / C2 

Fig. 2. F u n d a m e n t a l  s t ruc ture .  Resul t  of Four ier  wi th  ampli- 
t ude  IF1[ if all phases ~ were known.  The known positions 
of replaceable group R represented  by  th ick  l ined triangle. 
U n k n o w n  par t  C represented  by  vertices of th in  l ined 
polygon. Our aim is to recover  this polygon C from measured  
quanti t ies .  

A C 14--44 

The 'simplified Patterson'  can be derived from a 
synthesis with coefficients (IF1[ 2 -  IF2[ ~'- IRl]2+ IR2] 2) 
and the peaks corresponding to this are shown in 
Fig. 3. This synthesis contains only the images of the 
unknown part  C of the structure as seen from all 
points of R and also their inverses. 

The result of unfolding this simplified function by 
the weighted sum function method (Kartha & Rama- 
chandran, 1955) is given in Fig. 4 and, from the 
phase method point of view, this map is the result of 
a synthesis with (JFlJ 2 -  [F2J 2 -  JRlJ2+ ]R~J2)JR[ as am- 
plitude and taking the phase c¢ the same as tha t  of the 
replaceable group of atoms (Ramachandran & Raman, 
1959). I t  will be seen tha t  in this case where the 
number of R group atoms n = 3, the wanted image C 
occurs with maximum weight 3 and is accompanied 
by the following ghosts; 6 of C with weight 1, 3 of 
the inverse of C with weight 2 and another 3 of the 
inverse of C with weight 1. In  the general case of n 
replaceable atoms the wanted structure C has n fold 
weight and is accompanied by n ( n - 1 )  images of C 
with weight 1, n ( n - 1 ) / 2  of C* with weight 2 and 
another n images of C* with weight 1. These images 
of C corresponding to Fig. 4 could be more easily 
visualized by considering Fig. 5 where each image 
polygon is denoted by a single representative point 
of appropriate weight. I t  will be seen tha t  Fig. 5 is 
a map with I R]2+R 2 as coefficients. The first term 
gives rise to the Patterson peaks r t - r j  of the 
replaceable group. This, as is well known, has a large 
peak of weight n at  the origin and n ( n - 1 )  non-origin 
peaks which are, in general, single. The second set of 
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peaks due to R2 = [RI 2 exp [2ia] corresponds to peaks 
at points r~ + r~ which are in general of double weight, 
except for the case i =j when the corresponding peaks 
at  2r~ are single. The map in Fig. 4 may be regarded 

• Weight 1 

• Weight 2 

• Weight 3 

• Weight 1 
• Weight 2 

• Weight 3 

Fig. 6. Resul t  of removing  non-origin peaks  of set r i - - r  t in 
Fig. 5. This m a p  is obta ined by using both  phases ind ica ted  
by  isomorphous replacement ,  i.e., i t  has  ampl i tude  IFI cos~p 
and  phase o¢. 

Fig. 4. Resu l t  of superposit ion of Fig. 3 a t  inverse points  
of R group deno ted  by  do t t ed  tr iangle in t h a t  figure. 
This weighted  sum funct ion  will be given by  series 
( I F z l ~ - I F ~ I  2 -  IRll2-t - IR212)IR]. Weight  of various images are 
indicated.  

images of the inverse of C repeated at  the points 
r~-t-r~ shown in Fig. 5. With the data available for 
two non-centric isomorphous crystals, tlfis seems to be 
the maximum simplification possible in removing 
ghost peaks and accentuating the wanted part.  

o - -  

• Weight  1 

• Weight  2 

• Weight  3 

Fig. 5. Weight  and  posit ion of images in Fig. 4. R group 
shown b y  do t t ed  tr iangle.  Points  of repet i t ion could be 
divided into : a ;  set  r i  -- r j  and  b ; set r i  + rj.  

as the repetition of the structure C at the points of 
the Patterson peaks r ~ - r j  of the replaceable group 
and images of the inverse of C at the points r~ + r~ 
given by the second set; the images occurring with 
the appropriate weights. 

As a first approximation, the set of positive peaks 
of the double phased synthesis given in equation (3) 
is equivalent to tha t  obtained by removing n(n-1) 
images due to the non-origin peaks of the Patterson 
( r~ - r j )  in Fig. 5. The resulting synthesis thus removes 
all unwanted images of C from Fig. 4 and the result 
is shown in Fig. 6. Thus, the double phased synthesis 
contains a single image of the wanted structure C 
with weight n. The accompanying ghosts are the 

Appl ica t ion  of the m e t h o d  

The method has been tested on the [001] projection 
of a hypothetical crystal with a triclinic unit cell with 
a = 12, b = 15 A, ? - -  82 ° and space group P1. The two 
isomorphous crystal Cz and C2 both contain twenty  
carbon atoms at identical positions. The first crystal 
also contains in addition three atoms in known 
positions, their scattering power being twice tha t  of 
a nitrogen atom. For this structure, shown in Fig. 7, 
the quantities JF1], JF2], JR 1 and a were calculated over 
the whole region within the copper Ka  reflecting 

@ 
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© 

o @ 
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~ b  
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Fig. 7. S t ruc ture  assumed for tes t ing the  method .  Cell con- 
s tants  a---- 12, b =  15 A and  y = 8 2  °. Contains t w e n t y  carbon 
a toms  as u n k n o w n  pa r t  and  three  double weight  n i t rogen 
a toms  as replaceable group. All a toms  assumed to have  
isotropic t empe ra tu r e  factor  B - - 2 .  



G O P I N A T H  K A R T H A  685 

circle.* A uniform temperature factor parameter B = 2 
was assumed for all the atoms. 

i . . -  . .J  /-., ""'" J 

I 'L /  ."{D : - ~ .  : ' ~ ,  (Q':' ,,'; 

,::,,,., . . . . . . .  d.,( 
.. . . . . . . . . . . . .  

~-b 

Fig. 8. Fourier with heavy atom phases. Except  for heavy 
atom peaks most of the remaining peaks are in incorrect 
positions. 

First an attempt was made to solve the structure C 
as a heavy atom problem by giving to the amplitudes 
]FI[ the phases of the scattering from the three double 
nitrogen atoms. The resulting map is shown in Fig. 8. 
Some peaks, about eight, did show up at the required 
positions, but a larger number of equally high spurious 
peaks also appeared, so that, if we assigned the 
highest twenty peaks as true atomic positions, most 
of them would be wrong and refinement on this basis 
is not possible. This suggests that the heavy atom 
method using moderately heavy atoms (say, one 
chlorine atom against twenty carbon atoms) is not 
very efficient as a starting point for refinement in the 
case of non-centrosymmetric structures containing a 
fair number of light atoms. 

/ ~ , :  "-.. / ~-,,. ,. ['-, .,/; 

Fig. 9. Fourier with amplitude IFll and both possible phases 
~1 for the vector OCt. All twenty- three true atomic positions 
correspond to positive peaks and no spurious peak is as high 
as a real peak. 

* The author 's  thanks are due to Dr Alexander Tulinsky 
for assistance in performing the computations in this section 
on the IBM 650 at the Watson Scientific Computing Labora- 
tory in New York. 

.. , ' - ,  t ; ~ )  ..... ..' 

'\,. '-~c: 
, .... ~ <:(] 

Fig. 10. Fourier with modified coefficients to remove the 
heavy atoms also. The twenty  highest peaks occur exactly 
a t  the same place as the assumed light a tom positions. 

The Fourier synthesis for structure C1 using both 
the possible phases was next made and is shown in 
Fig. 9. A similar  series with slightly modified co- 
efficients for the second crystal C2 without the heavy 
atom is given in Fig. 10. Comparison with Fig. 7 
shows that  all the twenty highest peaks come exactly 
at the required positions and all spurious peaks are 
indeed smaller than the smallest true peak. Further, 
as shown before (8)(a), (b), (c) this series is expected 
to give the true structure with weight three and the 
inverse structure repeated at three points with double 
weight and at another three points with single weight. 
The positions and weights of the peaks expected from 
theory are shown in Fig. 11 and comparison with 
Fig. 10 shows that  the ghost peaks due to the use 
of incorrect phases all occur at the positions and with 
the intensities expected from the theory; quite a 
satisfying result. I t  may be recalled that  the number of 
replaceable atoms in the unit cell chosen here, namely, 
3, is the absolute minimum necessary in this method 
to form an acentric grouping of R atoms and that in 
practical eases the number will usually be higher than 
this, giving a correspondingly higher contrast between 

° ° °  °°  ° ° o 
e * * # N o  ®* ° o o ~ 

o¢° °oAoo o ; , ° °  
__..__ ° ~ 

Fig. 11. Expected positions and weights for both real and 
spurious peaks in the double phased Fourier. Comparison 
with Fig. 10 shows agreement for these positions. 



686 I S O M O R P H O U S  R E P L A C E M E N T  METHOD IN N O N - C E N T R O S Y M M E T R I C  S T R U C T U R E S  

the true and ghost peaks. From the present case it 
seems that  even the minimum of three replaceable 
atoms per cell makes the wanted peaks stand out 
against the background of a large number of double 
weight ghost peaks, 2 being the usual weight of these 
peaks even when the number of replaceable atoms is 
more than three. However, the number of ghost peaks 
per unit cell increases approximately as the square 
of the number of replaceable atoms per unit cell, and 
hence the probability of accidental coincidences of 
centers of ghost peaks and also the corresponding 
strengthening of the background of ghost rapidly 
increases. In any case, it may be expected that  for 
average atoms which are not too diffuse and with 
three-dimensional data this effect may not be an 
important factor in most practical cases of iso- 
morphous pairs where the number of replaceable 
atoms is only a small fraction of the total number of 
atoms in the cell. 

Of course, by choosing a hypothetical case like the 
one here and calculating the IFI values we have taken 
an ideal case of perfect isomorphism and no experimen- 
tal errors in intensity measurements, but there seems 
to be all reason to be optimistic that  the method will 
work in practical cases where random errors are 
allowed in intensity measurements. The method has 
in fact been applied (Tulinsky, 1960) with remarkable 
success to a very large molecule of unknown chemical 
formula and containing over fifty atoms, using data 
from the hydrochloride and the hydrobromide salts, 
both of which crystallized as non-centrosymmetric 
isomorphous structures. I t  was reported that  the first 
double phased synthesis showed up a good part 
(35 atoms out of approximately 50) of the structure 
which could be chemically identified and these were 
used as the starting point for subsequent refinements. 
I t  is extremely doubtful whether the bromine atom in 
the bromide of such a large molecule would have been 
heavy enough to give a suitable trial structure by the 
application of the usual heavy atom method. 

with the measured [F['s in the refinement of the 
structure. In al~ essentially parallel way two methods 
may be used for determining the sign of 0 in the phase 
angle expression for the case of two isomorphous non- 
centrosymmetric crystals. The first would be to use 
the multiple isomorphous series method (Harker, 1956) 
by producing, if possible, a third isomorph with the 
replaceable atoms in another set of positions. However, 
in ordinary cases this may be very difficult to achieve 
and hence we have to fall back on the second method, 
namely, the trial structure method, to resolve the sign 
ambiguity for 0. Fortunately this is a possible ap- 
proach, since we already have data from two iso- 
morphs and could produce a trial structure by the 
method of the double phased Fourier suggested here. 
Refinement could proceed with this trial structure, 
just as in the case of centrosymmetric structures, 
by using the trial structure phase angle q~', not directly 
in the next synthesis, but only for deciding the sign 
of 0 to be used in the phase angle expression q~ = c¢ _+ 0. 
This type of refinement could be faster than the 
refinement of q~ in the conventional heavy atom and 
trial structure methods in non-centric structures, the 
rate of convergence being similar to that  of a centro- 
symmetric case in the earlier stages. However, during 
the final stages of refinement, due to lack of iso- 
morphism at high resolutions, it may be advisable to 
apply the usual method of coordinate refinement using 
data from one crystal alone. 
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Conc lus ion  

Using two isomorphous non-centrosymmetrie crystals 
we get the amplitude IF] and the phase ~ = ~ + 0, the 
sign of 0 alone being uncertain. In this respect the 
situation is similar to the sign problem of a single 
centrosymmetric crystal whose amplitude IFI is known, 
but its sign alone is uncertain. In centr0symmetric 
structures this problem of the sign of IF] can be solved 
either by using the well known isomorphous series 
method or by the trial structure method where a trial 
structure is proposed for the crystal, the phase angle 
of [FI calculated on this basis and these phases are used 
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